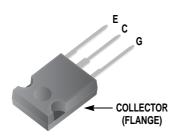
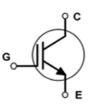
July 2008

FGH60N60SF 600V, 60A Field Stop IGBT

Features

- High current capability
- Low saturation voltage: $V_{CE(sat)} = 2.3V @ I_C = 60A$
- High input impedance •
- Fast switching •
- RoHS compliant •


Applications


• Induction Heating, UPS, SMPS, PFC

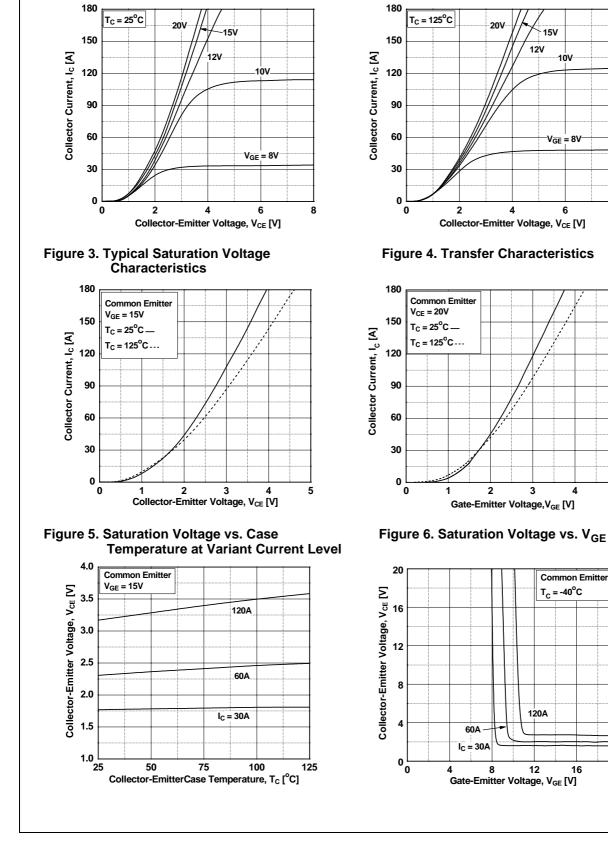
General Description

Using Novel Field Stop IGBT Technology, Fairchild's new series of Field Stop IGBTs offer the optimum performance for Induction Heating, UPS, SMPS and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units	
V _{CES}	Collector to Emitter Voltage		600	V	
V _{GES}	Gate to Emitter Voltage		± 20	V	
I _C	Collector Current	@ T _C = 25 ^o C	120	A	
	Collector Current	@ T _C = 100°C	60	A	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25 ^o C	180	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	378	W	
۰D	Maximum Power Dissipation	@ T _C = 100°C	151	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes: 1: Repetitive test, Pulse width limited by max. juntion temperature


Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.33	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W

Symbol Off Charact BV _{CES} ΔBV_{CES} ΔT_J I _{CES} I _{GES}	60SF al Chara eeristics Collector to Temperatu Voltage	FGH60N60SFTU acteristics of the l Parameter D Emitter Breakdown Voltage	-	Tube Tube C unless otherwise noted Conditions		er Tube Dea Typ.		- Box
Symbol Off Charact BV _{CES} Δ BV _{CES} Δ T _J I _{CES} I _{GES}	eristics Collector to Temperatu Voltage	acteristics of the lo Parameter	-			I	Max	
Symbol Off Charact BV _{CES} Δ BV _{CES} Δ T _J I _{CES} I _{GES}	eristics Collector to Temperatu Voltage	Parameter Demitter Breakdown Voltage	-		Min.	Tvp.	Max	
Off Charact BV _{CES} ΔBV _{CES} ΔT _J I _{CES} I _{GES}	Collector to Temperatu Voltage	e Emitter Breakdown Voltage	Test (Conditions	Min.	Tvp.	Mov	
BV _{CES} ΔBV _{CES} ΔT _J I _{CES} I _{GES}	Collector to Temperatu Voltage					- 71	Max.	Units
ΔBV _{CES} ΔT _J I _{CES} I _{GES}	Temperatu Voltage							
ΔBV _{CES} ΔT _J I _{CES} I _{GES}	Temperatu Voltage				600	-	-	V
I _{CES} I _{GES}	-	re Coefficient of Breakdown			-	0.4	-	V/ºC
I _{GES}		Cut-Off Current	$V_{CE} = V_{CES}, V_{CES}$	$V_{GE} = 0V$	-	-	250	μA
	G-E Leaka		$V_{GE} = V_{GES}, V_{GES}$		-	-	±400	nA
		<u> </u>	01 010					1
On Charact V _{GE(th)}			I _C = 250μA, V	(\/	4.0	5.0	6.5	V
* GE(th)			$I_{\rm C} = 200 \mu \text{A}, \text{ V}$ $I_{\rm C} = 60 \text{A}, \text{V}_{\rm GE}$		-	2.3	2.9	V
V _{CE(sat)}			$I_{C} = 60A, V_{GE} = 15V,$ $T_{C} = 125^{\circ}C$		-	2.5	-	v
Dynamic Cl	haracterist	ics			4			
C _{ies}	Input Capa	citance		a) (-	2820	-	pF
C _{oes}	Output Cap	pacitance	V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		-	350	-	pF
C _{res}	Reverse Tr	ansfer Capacitance			-	140	-	pF
Switching (Characteris	tics						
t _{d(on)}	Turn-On D	elay Time			-	22	-	ns
t _r	Rise Time				-	42	-	ns
t _{d(off)}	Turn-Off D	elay Time	V _{CC} = 400V, I	I _C = 60A,	-	134	-	ns
t _f	Fall Time		$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$		-	31	62	ns
E _{on}	Turn-On S	witching Loss			-	1.79	-	mJ
E _{off}	Turn-Off Sv	witching Loss			-	0.67	-	mJ
E _{ts}	Total Switc	hing Loss			-	2.46	-	mJ
t _{d(on)}	Turn-On D	elay Time			-	22	-	ns
t _r	Rise Time				-	44	-	ns
t _{d(off)}	Turn-Off D	elay Time	V _{CC} = 400V, I		-	144	-	ns
t _f	Fall Time			$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$		43	-	ns
E _{on}	Turn-On S	witching Loss	1100011VE LUQU, 1C = 120 U	-	1.88	-	mJ	
E _{off}		witching Loss	_		-	1.0	-	mJ
E _{ts}	Total Switc	hing Loss			-	2.88	-	mJ
Qg	Total Gate	•		- 604	-	198	-	nC
Q _{ge}	Gate to Em	hitter Charge	V _{CE} = 400V, I V _{GE} = 15V	C = 00A,	-	22	-	nC

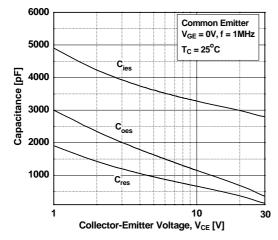
8

5

Typical Performance Characteristics


Figure 1. Typical Output Characteristics

Figure 2. Typical Output Characteristics


20

Typical Performance Characteristics

Figure 7. Saturation Voltage vs. V_{GE}

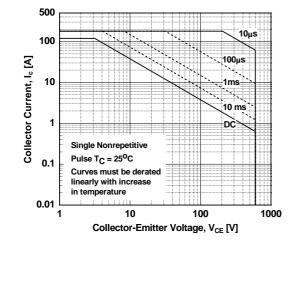


Figure 8. Saturation Voltage vs. V_{GE}

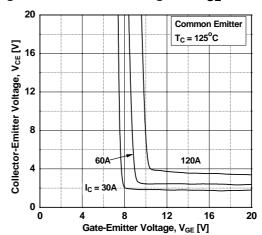


Figure 10. Gate charge Characteristics

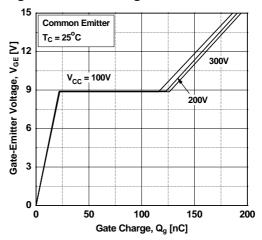
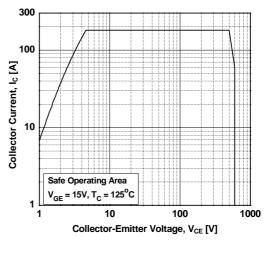
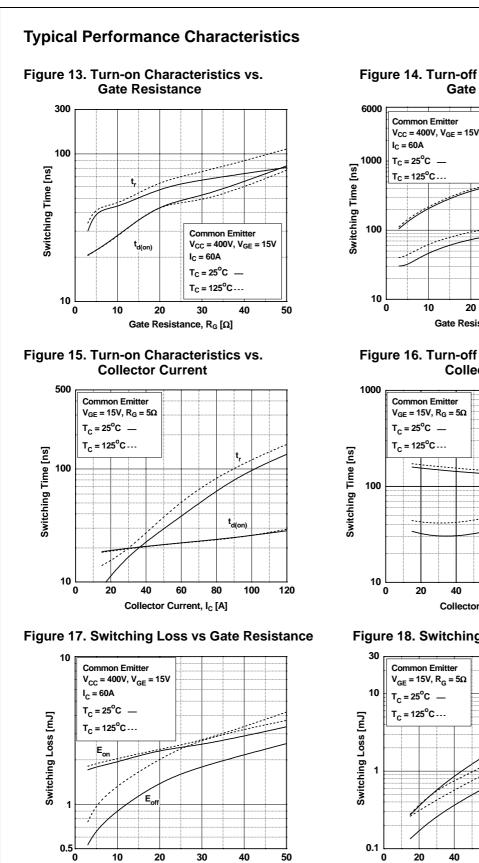
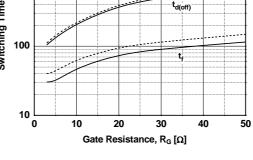
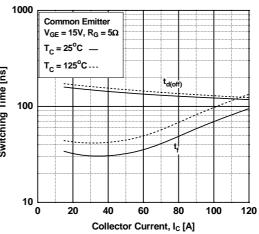





Figure 12. Turn off Switching SOA Characteristics



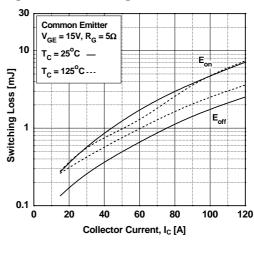


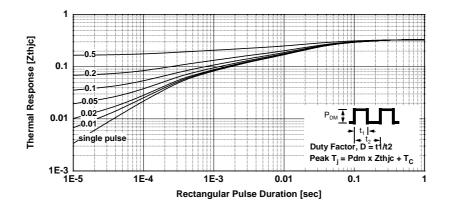
Figure 18. Switching Loss vs Collector Current

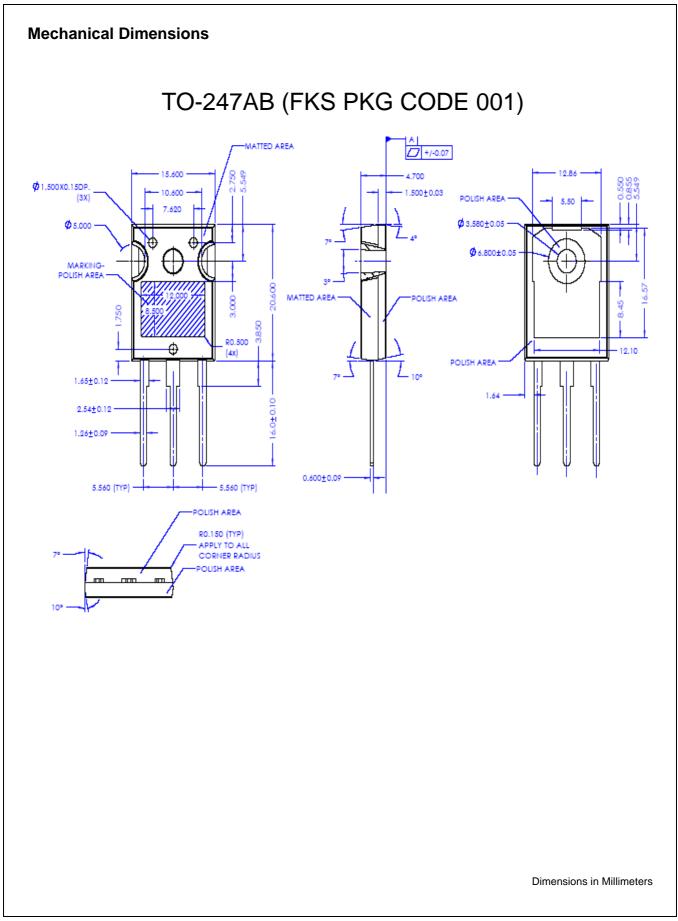
10

20

30

Gate Resistance, R_G [Ω]


40


50

FGH60N60SF 600V, 60A Field Stop IGBT

Typical Performance Characteristics

Figure 19. Transient Thermal Impedance of IGBT

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™	FPS™	PDP SPM™	The Power Franchise [®]
CorePLUS™	F-PFS™	Power-SPM™	the
CorePOWER™ CDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			pwer franchise
CROSSVOLT™ CTL™	Global Power Resource SM Green FPS™	Programmable Active Droop™ QFET [®]	TinyBoost™
Current Transfer Logic™	Green FPS™ e-Series™	QS™	TinyBuck™
EcoSPARK [®]	GTO™	Quiet Series™	TinyLogic [®] TINYOPTO™
EfficentMax™	IntelliMAX™	RapidConfigure™	TinyPower™
		Saving our world, 1mW at a time™	TinyPWM™
F7	MegaBuck™ MICROCOUPLER™	SmartMax™ SMART START™	TinyWire™
real R	MicroFET™	SPM®	\mathcal{U}
	MicroPak™	STEALTH™	/ SerDes
Fairchild®	MillerDrive™	SuperFET™	UHC [®]
Fairchild Semiconductor [®] FACT Quiet Series™	MotionMax™	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series	Motion-SPM™ OPTOLOGIC [®]	SuperSOT™-6 SuperSOT™-8	UniFET™ VCX™
FAST®	OPTOPLANAR [®]	SupreMOS™	VisualMax™
FastvCore™	®	SyncFET™	
FlashWriter [®] *	U		
		GENERAL	

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.